Comparison of whole genome amplification techniques for human single cell exome sequencing
نویسندگان
چکیده
BACKGROUND Whole genome amplification (WGA) is currently a prerequisite for single cell whole genome or exome sequencing. Depending on the method used the rate of artifact formation, allelic dropout and sequence coverage over the genome may differ significantly. RESULTS The largest difference between the evaluated protocols was observed when analyzing the target coverage and read depth distribution. These differences also had impact on the downstream variant calling. Conclusively, the products from the AMPLI1 and MALBAC kits were shown to be most similar to the bulk samples and are therefore recommended for WGA of single cells. DISCUSSION In this study four commercial kits for WGA (AMPLI1, MALBAC, Repli-G and PicoPlex) were used to amplify human single cells. The WGA products were exome sequenced together with non-amplified bulk samples from the same source. The resulting data was evaluated in terms of genomic coverage, allelic dropout and SNP calling.
منابع مشابه
Single cell on-chip whole genome amplification via micropillar arrays for reduced amplification bias
Single cell whole genome amplification is susceptible to amplification biases that impact the accuracy of single cell sequencing data. To address this, we have developed a microfluidic device for the isolation and purification of genomic DNA from individual cells. The device uses a micropillar array to physically capture single cells and its chromosomal DNA upon extraction. The extracted DNA is...
متن کاملO-38: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells
Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...
متن کاملI-44: Concurrent Whole-Genome Haplotyping and Copy-Number Profiling of Single Cells
Background Methods for haplotyping and DNA copynumber typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a conseque...
متن کاملExome Sequencing from Nanogram Amounts of Starting DNA: Comparing Three Approaches
Hybridization-based target enrichment protocols require relatively large starting amounts of genomic DNA, which is not always available. Here, we tested three approaches to pre-capture library preparation starting from 10 ng of genomic DNA: (i and ii) whole-genome amplification of DNA samples with REPLI-g (Qiagen) and GenomePlex (Sigma) kits followed by standard library preparation, and (iii) l...
متن کاملComparison of seven single cell Whole Genome Amplification commercial kits using targeted sequencing
Advances in biochemical technologies have led to a boost in the field of single cell genomics. Observation of the genome at a single cell resolution is currently achieved by pre-amplification using whole genome amplification (WGA) techniques that differ by their biochemical aspects and as a result by biased amplification of the original molecule. Several comparisons between commercially availab...
متن کامل